中位线定理(中位线定理怎么证明)

2023-08-07
89 阅读

三角形中位线定理

三角形中位线定理:三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。

证明:已知△ABC中,D,E分别是AB,AC两边中点。

求证DE平行于BC且等于BC/2。

过C作AB的平行线交DE的延长线于G点。

∵CG∥AD。

∴∠A=∠ACG。

∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)。

∴△ADE≌△CGE(A.S.A)。

∴AD=CG(全等三角形对应边相等)。

∵D为AB中点。

∴AD=BD。

∴BD=CG。

又∵BD∥CG。

∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)。

∴DG∥BC且DG=BC。

∴DE=DG/2=BC/2。

∴三角形的中位线定理成立。

简介:三角形中位线是三角形中重要的线段,三角形中位线定理是一个重要性质定理,它是前面已学过的平行线,全等三角形,平行四边形等知识内容的应用和深化,对进一步学习非常有用,在判定两直线平行和论证线段倍分关系时常常用到。

在三角形中位线定理的证明及应用中,处处渗透了化归思想,它是一种重要的思想方法。

三角形中位线的判定定理

中位线定理定义:中位线是在三角形或梯形中一条特殊的线段,与其所在的三角形或梯形有着特殊的关系。

连接三角形的两边中点的线段叫做三角形的中位线。

三角形有三条中位线,首尾相接时,每个小三角形面积都等于原三角形的...。

三角形中位线定理

三角形中位线定理:三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。

证明:已知△ABC中,D,E分别是AB,AC两边中点。

求证DE平行于BC且等于BC/2。

过C作AB的平行线交DE的延长线于G点。

∵CG∥AD。

∴∠A=∠ACG。

∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)。

∴△ADE≌△CGE(A.S.A)。

∴AD=CG(全等三角形对应边相等)。

∵D为AB中点。

∴AD=BD。

∴BD=CG。

又∵BD∥CG。

∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)。

∴DG∥BC且DG=BC。

∴DE=DG/2=BC/2。

∴三角形的中位线定理成立。

简介:三角形中位线是三角形中重要的线段,三角形中位线定理是一个重要性质定理,它是前面已学过的平行线,全等三角形,平行四边形等知识内容的应用和深化,对进一步学习非常有用,在判定两直线平行和论证线段倍分关系时常常用到。

在三角形中位线定理的证明及应用中,处处渗透了化归思想,它是一种重要的思想方法。

三角形中位线定理

三角形的中位线平行于三角形的第三边,并且等于第三边的一半。

比如,在上图中,D、E分别是三角形ABC的边AB、AC的中点,所以可以根据三角形中位线定理得到DE平行于BC且DE=1/2BC,这个定理在很多的证明题中都有用到,需要灵活运用。

在一道题中,如果给出点D是AB的中点,DE平行于BC且等于BC的一半,也是可以得到E是AC的中点。

所以一个定理我们不光要学会正向推理,也要会反向作用。

三条中位线围成的三角形的周长是原三角形的一半。

也是可以根据这个定理推理到的。

分享至:
管理员

小草

专注人工智能、前沿科技领域报道,致力于为读者带来最新、最深度的科技资讯。

评论 (0)

当前用户头像