公理的意思(公理的定义-什么叫“公理”公理、定理、定义?)
公理的定义-什么叫“公理”/公理、定理、定义
公理,是指依据人类理性的不证自明的基本事实,经过人类长期反复实践的考验,不需要再加证明的基本命题。定理(英语:Theorem)是经过受逻辑限制的证明为真的陈述。一般来说,在数学中,只有重要或有趣的陈述才叫定理。现代定义:对于一种事物的本质特征或一个概念的内涵和外延的确切而简要的说明;或是透过列出一个事件或者一个物件的基本属性来描述或规范一个词或一个概念的意义。
定理,定律,公理的区别和概念分别是
1、概念:
定理是经过受逻辑限制的证明为真的陈述。
定律是对客观事实的一种表达形式,通过大量具体的客观事实归纳而成的结论。
公理是指依据人类理性的不证自明的基本事实,经过人类长期反复实践的考验,不需要再加证明的基本命题。
2、区别:
定律是描述客观世界变化规律的表达式或者文字。
公理是不需要认证的,是大家公认的,可以直接拿来用的。定理是需要证明它是对的,才可以拿来用的。
3、公理
经过人类长期反复的实践检验是真实的,大家普遍公认的、不需要由其他判断加以证明、且也不能由其他判断证明的命题和原理。一些学科就是建立在这样一些公理的基础上。
公理1:任意一点到另外任意一点可以画直线。
公理2:一条有限线段可以继续延长。
公理3:以任意点为心及任意的距离可以画圆。
公理4:凡直角都彼此相等。
公理5:同平面内一条直线和另外两条直线相交,若在某一侧的两个内角和小于二直角的和,则这二直线经无限延长后在这一侧相交。
如传统形式逻辑三段论关于一类事物的全部是什么或不是什么,那么这类事物中的部分也是什么或不是什么,也即如果对一类事物的全部有所断定,那么对它的部分也就有所断定,便是公理。
但是,这并不说明公理一定是对的,人类对世界的认知是有限的,这种普遍公认的,不证自明的公理有出错的可能。出错不见得是坏事,反而推动人类一步一步更完善的认识世界。比如关于欧里几何第五公理,不能说是出错,但通过不同的假设就得出几种其它几何——椭圆几何、欧几里得几何和双曲几何。
所以可以得知的结论是这个基础并不是牢不可破的,只是在人类的认知系统内相对正确的
4、定理
已经证明具有正确性、可以作为原则或规律的命题或公式,如几何定理。定理是从真命题(公理或其他已被证明的定理)出发,经过受逻辑限制的演绎推导,证明为正确的结论,即另一个真命题。例如“平行四边形的对边相等”就是平面几何中的一个定理。
一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。
相信为真但未被证明的数学叙述为猜想,当它被证明为真后便是定理。它是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述,可以不经过证明成为猜想的过程,成为定理。
即定理是由公理或定理推导而来的命题或公式。推导方法依靠人类的逻辑学。
5、定律
定律是为实践和事实所证明,反映事物在一定条件下发展变化的客观规律的论断,是通过大量具体的客观事实经验累积归纳而成的结论。例如牛顿运动定律、能量守恒定律、欧姆定律等。
定律是一种理论模型,它用以描述特定情况、特定尺度下的现实世界,在其它尺度下可能会失效或者不准确。没有任何一种理论可以描述宇宙当中的所有情况,也没有任何一种理论可能完全正确。
简而言之,定律是人们通过猜想验证、通过无数次实践证明的,以特殊推导一般,以局部推导全局的的论断。很多科学与哲学的发展即基于此。
我想指出的是定律的局限性。它是有穷情况下对事物的归纳假设,不是必然正确的,当然也不可能穷尽所有情况。
所以可以得知人类认知系统的三个可能错误的来源:一是实践总结出来的定律不够全面,没有囊括所有情况。二是这些不证自明的公理基础。三是用来判断推导的逻辑学。(当然这个可以包括在一二条中。)
我觉得人类至今对世界的认识还只是一小部分,而且已经认知的部分看起来还这么的脆弱。但是我是一个乐观派,我相信世界的可知性,也相信总有一天人类会认知这个世界的一切,更希望能在自己的有生之年能够看到这一切的统一。
公理,定理,推论,之间的关系
公理:
1)经过人类长期反复的实践检验是真实的,不需要由其他判断加以证明的命题和原理。
2)某个演绎系统的初始命题。这样的命题在该系统内是不需要其他命题加以证明的,并且它们是推出该系统内其他命题的基本命题。定理:1、通过真命题[1](公理或其他已被证明的定理)出发,经过受逻辑限制的演绎推导,证明为正确的结论的命题或公式,例如“平行四边形的对边相等”就是平面几何中的一个定理。2、一般来说,在数学中,只有重要或有趣的陈述才叫定理,证明定理是数学的中心活动。相信为真但未被证明的数学叙述为猜想,当它被证明为真后便是定理。它是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述,可以不经过证明成为猜想的过程,成为定理。推论:"推论"是从一系列的示例找出一个组型。当受测者能从一系列示例中,藉由登录相关联的属性与注意到示例间的关系,进而抽取出一个概念或程序知识。推论的历程包含:比较示例,指认出组型规则,使用组型规则产出新符合组型规则的新示例。所谓“推理”(reasoning),又称“推论”(inference),指的是从一个或者一些已知的命题得出新命题的思维过程或思维形式。其中已知的命题是前提,得出的命题为结论。用最通俗的话解释他们之间的关系就是:1、公理是一些显而易见、能被大家所接受的但却是无法证明的命题。任何一门数学学科都是建立在某一个或几个公理的基础上演绎而成的。例如平面几何是建立在三条公理的基础上的,其中一条是:过两点可以作并且只可以作一条直线。这是无法证明的,只能把它作为公理。当然作为一门学科,公理应该越少越好。2、定义就是规定,为了说起来方便,也为了学习数学的时候大家有共同的语言,对一些概念、名词、记号等等必须作出规定,这就是定义。在这里常常看到一些人说出非常外行的话,甚至概念混淆,这些人与学习数学的人之间还没有共同语言,所以很多问题没有办法说清楚。上次这里就有一位连极限值与极值的概念也分不清楚,又不愿意虚心请教别人,这种人就只能由他去了。3、定理就是经过证明的命题,我们在以后数学学习和处理数学问题(例如解题时)的时候可以使用,一门数学学科学习得如何,很大程度上取决于对定理的熟悉程度。4、推论也是定理,如果一个结论非常容易由某个定理的结论稍作处理后得到,常常把这样的定理写作是这一个定理的推论。
定理,定律,公理的区别和概念分别是
1、概念:定理是经过受逻辑限制的证明为真的陈述。定律是对客观事实的一种表达形式,通过大量具体的客观事实归纳而成的结论。
公理是指依据人类理性的不证自明的基本事实,经过人类长期反复实践的考验,不需要再加证明的基本命题。
2、区别:定律是描述客观世界变化规律的表达式或者文字。公理是不需要认证的,是大家公认的,可以直接拿来用的。定理是需要证明它是对的,才可以拿来用的。
公理和定理的区别是什么
定理和公理的区别:公理是不需要认证,大家公认的,可以直接拿来用。而定理需要证明它是对的,才可以拿来用。
定理是经过受逻辑限制的证明为真的叙述。一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。相信为真但未被证明的数学叙述为猜想,当它经过证明後便是定理。它是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述可以不经过成为猜想的过程,成为定理。
公理是一个汉语词汇,读音为gōng lǐ,是指依据人类理性的不证自明的基本事实,经过人类长期反复实践的考验,不需要再加证明的基本命题。
在数学中,公理这一词被用于两种相关但相异的意思之下——逻辑公理和非逻辑公理。在这两种意义之下,公理都是用来推导其他命题的起点。和定理不同,一个公理(除非有冗余的)不能被其他公理推导出来,否则它就不是起点本身,而是能够从起点得出的某种结果—可以干脆被归为定理了。